Derivative estimation with local polynomial fitting

نویسندگان

  • Kris De Brabanter
  • Jos De Brabanter
  • Bart De Moor
  • Irène Gijbels
چکیده

We present a fully automated framework to estimate derivatives nonparametrically without estimating the regression function. Derivative estimation plays an important role in the exploration of structures in curves (jump detection and discontinuities), comparison of regression curves, analysis of human growth data, etc. Hence, the study of estimating derivatives is equally important as regression estimation itself. Via empirical derivatives we approximate the qth order derivative and create a new data set which can be smoothed by any nonparametric regression estimator. We derive L1 and L2 rates and establish consistency of the estimator. The new data sets created by this technique are no longer independent and identically distributed (i.i.d.) random variables anymore. As a consequence, automated model selection criteria (data-driven procedures) break down. Therefore, we propose a simple factor method, based on bimodal kernels, to effectively deal with correlated data in the local polynomial regression framework.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multivariate Locally Weighted Polynomial Fitting and Partial Derivative Estimation

Nonparametric regression estimator based on locally weighted least squares fitting has been studied by Fan and Ruppert and Wand. The latter paper also studies, in the univariate case, nonparametric derivative estimators given by a locally weighted polynomial fitting. Compared with traditional kernel estimators, these estimators are often of simpler form and possess some better properties. In th...

متن کامل

A Nonparametric Derivative-Based Method for R Wave Detection in ECG

QRS detection is very important in cardiovascular disease diagnosis and ECG (electrocardiogram) monitor, because it is the precondition of the calculation of correlative parameters and diagnosis. This paper presents a non-parametric derivative-based method for R wave detection in ECG signal. This method firstly uses a digital filter to cut out noises from ECG signals, utilizes local polynomial ...

متن کامل

THE COMPARISON OF TWO METHOD NONPARAMETRIC APPROACH ON SMALL AREA ESTIMATION (CASE: APPROACH WITH KERNEL METHODS AND LOCAL POLYNOMIAL REGRESSION)

Small Area estimation is a technique used to estimate parameters of subpopulations with small sample sizes.  Small area estimation is needed  in obtaining information on a small area, such as sub-district or village.  Generally, in some cases, small area estimation uses parametric modeling.  But in fact, a lot of models have no linear relationship between the small area average and the covariat...

متن کامل

Multivariate Regression Estimation : Local Polynomial Fitting for Time Series

We consider the estimation of the multivariate regression function m (x 1 , . . . ,xd) = E [ψ (Yd) | X 1 = x 1 , . . . ,Xd = xd], and its partial derivatives, for stationary random processes {Yi ,Xi} using local higher-order polynomial fitting. Particular cases of ψ yield estimation of the conditional mean, conditional moments and conditional distributions. Joint asymptotic normality is establi...

متن کامل

Two-Stage Method Based on Local Polynomial Fitting for a Linear Heteroscedastic Regression Model and Its Application in Economics

We introduce the extension of local polynomial fitting to the linear heteroscedastic regression model. Firstly, the local polynomial fitting is applied to estimate heteroscedastic function, then the coefficients of regression model are obtained by using generalized least squares method. One noteworthy feature of our approach is that we avoid the testing for heteroscedasticity by improving the t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2013